36 research outputs found

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015

    Distributing Recognition in Computational Paralinguistics

    Get PDF

    Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Get PDF
    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances

    Connecting Subspace Learning and Extreme Learning Machine in Speech Emotion Recognition

    Get PDF
    Speech Emotion Recognition (SER) is a powerful tool for endowing computers with the capacity to process information about the affective states of users in human-machine interactions. Recent research has shown the effectiveness of graph embedding based subspace learning and extreme learning machine applied to SER, but there are still various drawbacks in these two techniques that limit their application. Regarding subspace learning, the change from linearity to nonlinearity is usually achieved through kernelisation, while extreme learning machines only take label information into consideration at the output layer. In order to overcome these drawbacks, this paper leverages extreme learning machine for dimensionality reduction and proposes a novel framework to combine spectral regression based subspace learning and extreme learning machine. The proposed framework contains three stages - data mapping, graph decomposition, and regression. At the data mapping stage, various mapping strategies provide different views of the samples. At the graph decomposition stage, specifically designed embedding graphs provide a possibility to better represent the structure of data, through generating virtual coordinates. Finally, at the regression stage, dimension-reduced mappings are achieved by connecting the virtual coordinates and data mapping. Using this framework, we propose several novel dimensionality reduction algorithms, apply them to SER tasks, and compare their performance to relevant state-of-the-art methods. Our results on several paralinguistic corpora show that our proposed techniques lead to significant improvements
    corecore